Internal
problem
ID
[18483]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
17.
Boundary
value
problems.
Exercises
page
163
Problem
number
:
722
Date
solved
:
Thursday, October 02, 2025 at 03:14:10 PM
CAS
classification
:
[[_high_order, _missing_y]]
With initial conditions
ode:=x^2*diff(diff(diff(diff(y(x),x),x),x),x)+4*x*diff(diff(diff(y(x),x),x),x)+2*diff(diff(y(x),x),x) = 0; ic:=[y(1) = 0, D(y)(1) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,4}]+4*x*D[y[x],{x,3}]+2*D[y[x],{x,2}]==0; ic={y[1]==0,Derivative[1][y][1]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 4)) + 4*x*Derivative(y(x), (x, 3)) + 2*Derivative(y(x), (x, 2)),0) ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): 0} dsolve(ode,func=y(x),ics=ics)