Internal
problem
ID
[18497]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
18.1
Integration
of
differential
equation
in
series.
Power
series.
Exercises
page
171
Problem
number
:
736
Date
solved
:
Thursday, October 02, 2025 at 03:14:22 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=diff(diff(y(x),x),x) = x^2*y(x)-diff(y(x),x); ic:=[y(0) = 1, D(y)(0) = 0]; dsolve([ode,op(ic)],y(x),type='series',x=0);
ode=D[y[x],{x,2}]==x^2*y[x]-D[y[x],x]; ic={y[0]==1,Derivative[1][y][0] ==0}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*y(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)