69.23.13 problem 736

Internal problem ID [18497]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 2 (Higher order ODEs). Section 18.1 Integration of differential equation in series. Power series. Exercises page 171
Problem number : 736
Date solved : Thursday, October 02, 2025 at 03:14:22 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }&=x^{2} y-y^{\prime } \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ y^{\prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 14
Order:=6; 
ode:=diff(diff(y(x),x),x) = x^2*y(x)-diff(y(x),x); 
ic:=[y(0) = 1, D(y)(0) = 0]; 
dsolve([ode,op(ic)],y(x),type='series',x=0);
 
\[ y = 1+\frac {1}{12} x^{4}-\frac {1}{60} x^{5}+\operatorname {O}\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 19
ode=D[y[x],{x,2}]==x^2*y[x]-D[y[x],x]; 
ic={y[0]==1,Derivative[1][y][0] ==0}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to -\frac {x^5}{60}+\frac {x^4}{12}+1 \]
Sympy. Time used: 0.254 (sec). Leaf size: 49
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*y(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 0} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = - \frac {x^{4} r{\left (3 \right )}}{4} + \frac {x^{5} r{\left (3 \right )}}{20} + C_{2} \left (- \frac {x^{5}}{60} + \frac {x^{4}}{12} + 1\right ) + C_{1} x \left (\frac {x^{4}}{20} - \frac {x}{2} + 1\right ) + O\left (x^{6}\right ) \]