Internal
problem
ID
[18503]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
18.2.
Expanding
a
solution
in
generalized
power
series.
Bessels
equation.
Exercises
page
177
Problem
number
:
744
Date
solved
:
Thursday, October 02, 2025 at 03:14:26 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(4*x^2-1/9)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(4*x^2-1/9)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (4*x**2 - 1/9)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)