69.26.4 problem 771

Internal problem ID [18519]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 3 (Systems of differential equations). Section 19. Basic concepts and definitions. Exercises page 199
Problem number : 771
Date solved : Sunday, October 12, 2025 at 05:33:58 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=\frac {x_{1} \left (t \right )^{2}}{x_{2} \left (t \right )}\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{2} \left (t \right )-x_{1} \left (t \right ) \end{align*}
Maple. Time used: 0.150 (sec). Leaf size: 66
ode:=[diff(x__1(t),t) = x__1(t)^2/x__2(t), diff(x__2(t),t) = x__2(t)-x__1(t)]; 
dsolve(ode);
 
\begin{align*} [\{x_{1} \left (t \right ) &= 0\}, \{x_{2} \left (t \right ) = c_1 \,{\mathrm e}^{t}\}] \\ \left [\left \{x_{1} \left (t \right ) &= \frac {1}{\sqrt {2 c_1 \,{\mathrm e}^{-t}-2 c_2}}, x_{1} \left (t \right ) = -\frac {1}{\sqrt {2 c_1 \,{\mathrm e}^{-t}-2 c_2}}\right \}, \left \{x_{2} \left (t \right ) = \frac {x_{1} \left (t \right )^{2}}{\frac {d}{d t}x_{1} \left (t \right )}\right \}\right ] \\ \end{align*}
Mathematica. Time used: 0.062 (sec). Leaf size: 125
ode={D[ x1[t],t]==x1[t]^2/x2[t],D[ x2[t],t]==x2[t]-x1[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x2}(t)&\to \frac {2 \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1] \left (2 c_1 K[1]^2+1\right )}dK[1]\&\right ]\left [\frac {t}{2}+c_2\right ]}{1+2 c_1 \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1] \left (2 c_1 K[1]^2+1\right )}dK[1]\&\right ]\left [\frac {t}{2}+c_2\right ]{}^2}\\ \text {x1}(t)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{K[1] \left (2 c_1 K[1]^2+1\right )}dK[1]\&\right ]\left [\frac {t}{2}+c_2\right ] \end{align*}
Sympy. Time used: 0.335 (sec). Leaf size: 112
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-x__1(t)**2/x__2(t) + Derivative(x__1(t), t),0),Eq(x__1(t) - x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = \sqrt {\frac {e^{C_{2} + t}}{C_{1} \left (1 - e^{C_{2} + t}\right )}}, \ x^{2}{\left (t \right )} = \frac {2 \sqrt {\frac {e^{C_{2} + t}}{C_{1} \left (1 - e^{C_{2} + t}\right )}}}{1 + \frac {e^{C_{2} + t}}{1 - e^{C_{2} + t}}}, \ x^{1}{\left (t \right )} = - \sqrt {- \frac {e^{C_{2} + t}}{C_{1} \left (e^{C_{2} + t} - 1\right )}}, \ x^{2}{\left (t \right )} = - \frac {2 \sqrt {- \frac {e^{C_{2} + t}}{C_{1} \left (e^{C_{2} + t} - 1\right )}}}{1 - \frac {e^{C_{2} + t}}{e^{C_{2} + t} - 1}}\right ] \]