Internal
problem
ID
[701]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
1.4.
Separable
equations.
Page
43
Problem
number
:
26
Date
solved
:
Tuesday, September 30, 2025 at 04:06:30 AM
CAS
classification
:
[_separable]
With initial conditions
ode:=diff(y(x),x) = 2*x*y(x)^2+3*x^2*y(x)^2; ic:=[y(1) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],x] == 2*x*y[x]^2+3*x^2*y[x]^2; ic=y[1]==-1; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-3*x**2*y(x)**2 - 2*x*y(x)**2 + Derivative(y(x), x),0) ics = {y(1): -1} dsolve(ode,func=y(x),ics=ics)