Internal
problem
ID
[18549]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
3
(Systems
of
differential
equations).
Section
22.
Integration
of
homogeneous
linear
systems
with
constant
coefficients.
Eulers
method.
Exercises
page
230
Problem
number
:
809
Date
solved
:
Thursday, October 02, 2025 at 03:14:47 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 2*x(t)-y(t)+z(t), diff(y(t),t) = x(t)+z(t), diff(z(t),t) = y(t)-2*z(t)-3*x(t)]; ic:=[x(0) = 0, y(0) = 0, z(0) = 1]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==2*x[t]-y[t]+z[t],D[y[t],t]==x[t]+z[t],D[z[t],t]==y[t]-2*z[t]-3*x[t]}; ic={x[0]==0,y[0]==0,z[0]==1}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-2*x(t) + y(t) - z(t) + Derivative(x(t), t),0),Eq(-x(t) - z(t) + Derivative(y(t), t),0),Eq(3*x(t) - y(t) + 2*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)