70.4.14 problem 14

Internal problem ID [18695]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.6 (Exact equations and integrating factors). Problems at page 100
Problem number : 14
Date solved : Thursday, October 02, 2025 at 03:21:37 PM
CAS classification : [_exact, _rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class A`]]

\begin{align*} 9 x^{2}+y-1-\left (4 y-x \right ) y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \\ \end{align*}
Maple. Time used: 0.070 (sec). Leaf size: 25
ode:=9*x^2+y(x)-1-(4*y(x)-x)*diff(y(x),x) = 0; 
ic:=[y(1) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \frac {x}{4}-\frac {\sqrt {24 x^{3}+x^{2}-8 x -16}}{4} \]
Mathematica. Time used: 0.098 (sec). Leaf size: 34
ode=(9*x^2+y[x]-1)-(4*y[x]-x)*D[y[x],x]==0; 
ic={y[1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{4} \left (x+i \sqrt {-24 x^3-x^2+8 x+16}\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*x**2 - (-x + 4*y(x))*Derivative(y(x), x) + y(x) - 1,0) 
ics = {y(1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out