70.5.7 problem 7

Internal problem ID [18714]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.7 (Substitution Methods). Problems at page 108
Problem number : 7
Date solved : Thursday, October 02, 2025 at 03:22:51 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {4 y-7 x}{5 x -y} \end{align*}
Maple. Time used: 0.057 (sec). Leaf size: 53
ode:=diff(y(x),x) = (4*y(x)-7*x)/(5*x-y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ -\frac {\ln \left (\frac {-7 x^{2}-x y+y^{2}}{x^{2}}\right )}{2}+\frac {9 \sqrt {29}\, \operatorname {arctanh}\left (\frac {\left (-2 y+x \right ) \sqrt {29}}{29 x}\right )}{29}-\ln \left (x \right )-c_1 = 0 \]
Mathematica. Time used: 0.042 (sec). Leaf size: 68
ode=D[y[x],x]==(4*y[x]-7*x)/(5*x-y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {1}{58} \left (29-9 \sqrt {29}\right ) \log \left (-\frac {2 y(x)}{x}+\sqrt {29}+1\right )+\frac {1}{58} \left (29+9 \sqrt {29}\right ) \log \left (\frac {2 y(x)}{x}+\sqrt {29}-1\right )=-\log (x)+c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) + (7*x - 4*y(x))/(5*x - y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out