Internal
problem
ID
[18741]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.7
(Substitution
Methods).
Problems
at
page
108
Problem
number
:
35
Date
solved
:
Thursday, October 02, 2025 at 03:30:18 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=4*x*y(x)*diff(y(x),x) = 8*x^2+5*y(x)^2; dsolve(ode,y(x), singsol=all);
ode=4*x*y[x]*D[y[x],x]==8*x^2+5*y[x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*x**2 + 4*x*y(x)*Derivative(y(x), x) - 5*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)