Internal
problem
ID
[18765]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
3.
Systems
of
two
first
order
equations.
Section
3.3
(Homogeneous
linear
systems
with
constant
coefficients).
Problems
at
page
165
Problem
number
:
5
Date
solved
:
Thursday, October 02, 2025 at 03:30:41 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 4*x(t)-3*y(t), diff(y(t),t) = 8*x(t)-6*y(t)]; dsolve(ode);
ode={D[x[t],t]==4*x[t]-3*y[t],D[y[t],t]==8*x[t]-6*y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-4*x(t) + 3*y(t) + Derivative(x(t), t),0),Eq(-8*x(t) + 6*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)