70.10.2 problem 2

Internal problem ID [18811]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 3. Systems of two first order equations. Section 3.6 (A brief introduction to nonlinear systems). Problems at page 195
Problem number : 2
Date solved : Thursday, October 02, 2025 at 03:31:06 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-x \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=2 y \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=4 \\ y \left (0\right )&=2 \\ \end{align*}
Maple. Time used: 0.123 (sec). Leaf size: 19
ode:=[diff(x(t),t) = -x(t), diff(y(t),t) = 2*y(t)]; 
ic:=[x(0) = 4, y(0) = 2]; 
dsolve([ode,op(ic)]);
 
\begin{align*} x \left (t \right ) &= 4 \,{\mathrm e}^{-t} \\ y \left (t \right ) &= 2 \,{\mathrm e}^{2 t} \\ \end{align*}
Mathematica. Time used: 0.026 (sec). Leaf size: 22
ode={D[x[t],t]==-x[t],D[y[t],t]==2*y[t]}; 
ic={x[0]==4,y[0]==2}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to 4 e^{-t}\\ y(t)&\to 2 e^{2 t} \end{align*}
Sympy. Time used: 0.031 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(x(t) + Derivative(x(t), t),0),Eq(-2*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = C_{1} e^{- t}, \ y{\left (t \right )} = C_{2} e^{2 t}\right ] \]