70.12.3 problem 3

Internal problem ID [18846]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.2 (Theory of second order linear homogeneous equations). Problems at page 226
Problem number : 3
Date solved : Friday, October 03, 2025 at 07:33:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} t \left (-4+t \right ) y^{\prime \prime }+3 t y^{\prime }+4 y&=2 \end{align*}

With initial conditions

\begin{align*} y \left (3\right )&=0 \\ y^{\prime }\left (3\right )&=-1 \\ \end{align*}
Maple. Time used: 0.648 (sec). Leaf size: 479
ode:=t*(t-4)*diff(diff(y(t),t),t)+3*t*diff(y(t),t)+4*y(t) = 2; 
ic:=[y(3) = 0, D(y)(3) = -1]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}
Mathematica. Time used: 0.867 (sec). Leaf size: 539
ode=t*(t-4)*D[y[t],{t,2}]+3*t*D[y[t],t]+4*y[t]==2; 
ic={y[3]==0,Derivative[1][y][3]==-1}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {-2 t \operatorname {Hypergeometric2F1}\left (2-i \sqrt {3},2+i \sqrt {3},2,\frac {t}{4}\right ) \left (8 G_{2,2}^{2,0}\left (\frac {3}{4}| \begin {array}{c} -i \sqrt {3},i \sqrt {3} \\ 0,1 \\ \end {array} \right )+G_{2,2}^{2,0}\left (\frac {3}{4}| \begin {array}{c} -1-i \sqrt {3},-1+i \sqrt {3} \\ 0,0 \\ \end {array} \right )\right )+\left (40 \operatorname {Hypergeometric2F1}\left (2-i \sqrt {3},2+i \sqrt {3},2,\frac {3}{4}\right )-21 \operatorname {Hypergeometric2F1}\left (3-i \sqrt {3},3+i \sqrt {3},3,\frac {3}{4}\right )\right ) G_{2,2}^{2,0}\left (\frac {t}{4}| \begin {array}{c} -i \sqrt {3},i \sqrt {3} \\ 0,1 \\ \end {array} \right )+6 \operatorname {Hypergeometric2F1}\left (2-i \sqrt {3},2+i \sqrt {3},2,\frac {3}{4}\right ) G_{2,2}^{2,0}\left (\frac {3}{4}| \begin {array}{c} -1-i \sqrt {3},-1+i \sqrt {3} \\ 0,0 \\ \end {array} \right )+21 \operatorname {Hypergeometric2F1}\left (3-i \sqrt {3},3+i \sqrt {3},3,\frac {3}{4}\right ) G_{2,2}^{2,0}\left (\frac {3}{4}| \begin {array}{c} -i \sqrt {3},i \sqrt {3} \\ 0,1 \\ \end {array} \right )+8 \operatorname {Hypergeometric2F1}\left (2-i \sqrt {3},2+i \sqrt {3},2,\frac {3}{4}\right ) G_{2,2}^{2,0}\left (\frac {3}{4}| \begin {array}{c} -i \sqrt {3},i \sqrt {3} \\ 0,1 \\ \end {array} \right )}{42 \operatorname {Hypergeometric2F1}\left (3-i \sqrt {3},3+i \sqrt {3},3,\frac {3}{4}\right ) G_{2,2}^{2,0}\left (\frac {3}{4}| \begin {array}{c} -i \sqrt {3},i \sqrt {3} \\ 0,1 \\ \end {array} \right )+4 \operatorname {Hypergeometric2F1}\left (2-i \sqrt {3},2+i \sqrt {3},2,\frac {3}{4}\right ) \left (4 G_{2,2}^{2,0}\left (\frac {3}{4}| \begin {array}{c} -i \sqrt {3},i \sqrt {3} \\ 0,1 \\ \end {array} \right )+3 G_{2,2}^{2,0}\left (\frac {3}{4}| \begin {array}{c} -1-i \sqrt {3},-1+i \sqrt {3} \\ 0,0 \\ \end {array} \right )\right )} \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*(t - 4)*Derivative(y(t), (t, 2)) + 3*t*Derivative(y(t), t) + 4*y(t) - 2,0) 
ics = {y(3): 0, Subs(Derivative(y(t), t), t, 3): -1} 
dsolve(ode,func=y(t),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(t), t) - (t*(4 - t)*Derivative(y(t), (t, 2)) - 4*y(t) + 2)/(3*t) cannot be solved by the factorable group method