70.13.30 problem 30

Internal problem ID [18899]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.3 (Linear homogeneous equations with constant coefficients). Problems at page 239
Problem number : 30
Date solved : Thursday, October 02, 2025 at 03:32:37 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2 \\ y^{\prime }\left (0\right )&=-1 \\ \end{align*}
Maple. Time used: 0.045 (sec). Leaf size: 17
ode:=diff(diff(y(x),x),x)+3*diff(y(x),x)+2*y(x) = 0; 
ic:=[y(0) = 2, D(y)(0) = -1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 3 \,{\mathrm e}^{-x}-{\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 18
ode=D[y[x],{x,2}]+3*D[y[x],x]+2*y[x]==0; 
ic={y[0]==2,Derivative[1][y][0] ==-1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x} \left (3 e^x-1\right ) \end{align*}
Sympy. Time used: 0.103 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) + 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): -1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (3 - e^{- x}\right ) e^{- x} \]