70.13.46 problem 55

Internal problem ID [18915]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.3 (Linear homogeneous equations with constant coefficients). Problems at page 239
Problem number : 55
Date solved : Thursday, October 02, 2025 at 03:32:50 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 13
ode:=x^2*diff(diff(y(x),x),x)+4*x*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1 x +c_2}{x^{2}} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 16
ode=x^2*D[y[x],{x,2}]+4*x*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2 x+c_1}{x^2} \end{align*}
Sympy. Time used: 0.097 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 4*x*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + \frac {C_{2}}{x}}{x} \]