70.17.9 problem 18

Internal problem ID [18981]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.7 (Variation of parameters). Problems at page 280
Problem number : 18
Date solved : Thursday, October 02, 2025 at 03:36:37 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} 4 y^{\prime \prime }+y&=2 \sec \left (2 t \right ) \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 169
ode:=4*diff(diff(y(t),t),t)+y(t) = 2*sec(2*t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {\sqrt {2-\sqrt {2}}\, \sin \left (\frac {t}{2}\right ) \left (1+\sqrt {2}\right ) \operatorname {arctanh}\left (\sin \left (\frac {t}{2}\right ) \sqrt {2-\sqrt {2}}\, \left (2+\sqrt {2}\right )\right )}{2}+\frac {\sqrt {2+\sqrt {2}}\, \cos \left (\frac {t}{2}\right ) \left (\sqrt {2}-1\right ) \operatorname {arctanh}\left (\cos \left (\frac {t}{2}\right ) \sqrt {2+\sqrt {2}}\, \left (\sqrt {2}-2\right )\right )}{2}+\frac {\sqrt {2-\sqrt {2}}\, \cos \left (\frac {t}{2}\right ) \left (1+\sqrt {2}\right ) \operatorname {arctanh}\left (\cos \left (\frac {t}{2}\right ) \sqrt {2-\sqrt {2}}\, \left (2+\sqrt {2}\right )\right )}{2}+\frac {\sqrt {2+\sqrt {2}}\, \sin \left (\frac {t}{2}\right ) \left (\sqrt {2}-1\right ) \operatorname {arctanh}\left (\sin \left (\frac {t}{2}\right ) \sqrt {2+\sqrt {2}}\, \left (\sqrt {2}-2\right )\right )}{2}+\cos \left (\frac {t}{2}\right ) c_1 +\sin \left (\frac {t}{2}\right ) c_2 \]
Mathematica. Time used: 0.193 (sec). Leaf size: 136
ode=4*D[y[t],{t,2}]+y[t]==2*Sec[2*t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \cos \left (\frac {t}{2}\right ) \int _1^t-\sec (2 K[1]) \sin \left (\frac {K[1]}{2}\right )dK[1]+\frac {1}{2} \sqrt {2+\sqrt {2}} \sin \left (\frac {t}{2}\right ) \text {arctanh}\left (\frac {2 \sin \left (\frac {t}{2}\right )}{\sqrt {2-\sqrt {2}}}\right )-\frac {\sin \left (\frac {t}{2}\right ) \text {arctanh}\left (\frac {2 \sin \left (\frac {t}{2}\right )}{\sqrt {2+\sqrt {2}}}\right )}{\sqrt {2 \left (2+\sqrt {2}\right )}}+c_1 \cos \left (\frac {t}{2}\right )+c_2 \sin \left (\frac {t}{2}\right ) \end{align*}
Sympy. Time used: 1.043 (sec). Leaf size: 39
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t) + 4*Derivative(y(t), (t, 2)) - 2/cos(2*t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (C_{1} - \int \frac {\sin {\left (\frac {t}{2} \right )}}{\cos {\left (2 t \right )}}\, dt\right ) \cos {\left (\frac {t}{2} \right )} + \left (C_{2} + \int \frac {\cos {\left (\frac {t}{2} \right )}}{\cos {\left (2 t \right )}}\, dt\right ) \sin {\left (\frac {t}{2} \right )} \]