Internal
problem
ID
[753]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
1.6,
Substitution
methods
and
exact
equations.
Page
74
Problem
number
:
25
Date
solved
:
Tuesday, September 30, 2025 at 04:09:13 AM
CAS
classification
:
[_Bernoulli]
ode:=(x^4+1)^(1/2)*y(x)^2*(y(x)+x*diff(y(x),x)) = x; dsolve(ode,y(x), singsol=all);
ode=(x^4+1)^(1/2)*y[x]^2*(y[x]+x*D[y[x],x]) ==x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x + sqrt(x**4 + 1)*(x*Derivative(y(x), x) + y(x))*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)