70.21.14 problem 14 (c)

Internal problem ID [19064]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 5. The Laplace transform. Section 5.7 (Impulse Functions). Problems at page 350
Problem number : 14 (c)
Date solved : Thursday, October 02, 2025 at 03:37:40 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+\frac {y^{\prime }}{4}+y&=\delta \left (t -1\right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.144 (sec). Leaf size: 28
ode:=diff(diff(y(t),t),t)+1/4*diff(y(t),t)+y(t) = Dirac(t-1); 
ic:=[y(0) = 0, D(y)(0) = 0]; 
dsolve([ode,op(ic)],y(t),method='laplace');
 
\[ y = \frac {8 \sqrt {7}\, \operatorname {Heaviside}\left (t -1\right ) {\mathrm e}^{\frac {1}{8}-\frac {t}{8}} \sin \left (\frac {3 \sqrt {7}\, \left (t -1\right )}{8}\right )}{21} \]
Mathematica. Time used: 0.08 (sec). Leaf size: 209
ode=D[y[t],{t,2}]+1/4*D[y[t],t]+y[t]==DiracDelta[t-1]; 
ic={y[0]==0,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -e^{-t/8} \left (\sin \left (\frac {3 \sqrt {7} t}{8}\right ) \int _1^0\frac {8 \sqrt [8]{e} \cos \left (\frac {3 \sqrt {7}}{8}\right ) \delta (K[1]-1)}{3 \sqrt {7}}dK[1]-\sin \left (\frac {3 \sqrt {7} t}{8}\right ) \int _1^t\frac {8 \sqrt [8]{e} \cos \left (\frac {3 \sqrt {7}}{8}\right ) \delta (K[1]-1)}{3 \sqrt {7}}dK[1]+\cos \left (\frac {3 \sqrt {7} t}{8}\right ) \int _1^0-\frac {8 \sqrt [8]{e} \delta (K[2]-1) \sin \left (\frac {3 \sqrt {7}}{8}\right )}{3 \sqrt {7}}dK[2]-\cos \left (\frac {3 \sqrt {7} t}{8}\right ) \int _1^t-\frac {8 \sqrt [8]{e} \delta (K[2]-1) \sin \left (\frac {3 \sqrt {7}}{8}\right )}{3 \sqrt {7}}dK[2]\right ) \end{align*}
Sympy. Time used: 1.903 (sec). Leaf size: 160
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-Dirac(t - 1) + y(t) + Derivative(y(t), t)/4 + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (\left (- \frac {8 \sqrt {7} \int \operatorname {Dirac}{\left (t - 1 \right )} e^{\frac {t}{8}} \sin {\left (\frac {3 \sqrt {7} t}{8} \right )}\, dt}{21} + \frac {8 \sqrt {7} \int \limits ^{0} \operatorname {Dirac}{\left (t - 1 \right )} e^{\frac {t}{8}} \sin {\left (\frac {3 \sqrt {7} t}{8} \right )}\, dt}{21}\right ) \cos {\left (\frac {3 \sqrt {7} t}{8} \right )} + \left (\frac {8 \sqrt {7} \int \operatorname {Dirac}{\left (t - 1 \right )} e^{\frac {t}{8}} \cos {\left (\frac {3 \sqrt {7} t}{8} \right )}\, dt}{21} - \frac {8 \sqrt {7} \int \limits ^{0} \operatorname {Dirac}{\left (t - 1 \right )} e^{\frac {t}{8}} \cos {\left (\frac {3 \sqrt {7} t}{8} \right )}\, dt}{21}\right ) \sin {\left (\frac {3 \sqrt {7} t}{8} \right )}\right ) e^{- \frac {t}{8}} \]