Internal
problem
ID
[19071]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
5.
The
Laplace
transform.
Section
5.8
(Convolution
Integrals
and
Their
Applications).
Problems
at
page
359
Problem
number
:
17
Date
solved
:
Thursday, October 02, 2025 at 03:37:45 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+diff(y(t),t)+5/4*y(t) = 1-Heaviside(t-Pi); ic:=[y(0) = 1, D(y)(0) = -1]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+D[y[t],t]+125/100*y[t]==1-UnitStep[t-Pi]; ic={y[0]==1,Derivative[1][y][0] ==-1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(5*y(t)/4 + Heaviside(t - pi) + Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 1,0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): -1} dsolve(ode,func=y(t),ics=ics)