70.26.14 problem 18
Internal
problem
ID
[19132]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.4
(Nondefective
Matrices
with
Complex
Eigenvalues).
Problems
at
page
419
Problem
number
:
18
Date
solved
:
Thursday, October 02, 2025 at 03:38:31 PM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=3 x_{2} \left (t \right )-2 x_{4} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=-\frac {x_{1} \left (t \right )}{2}+x_{2} \left (t \right )-3 x_{3} \left (t \right )-\frac {5 x_{4} \left (t \right )}{2}\\ \frac {d}{d t}x_{3} \left (t \right )&=3 x_{2} \left (t \right )-5 x_{3} \left (t \right )-3 x_{4} \left (t \right )\\ \frac {d}{d t}x_{4} \left (t \right )&=x_{1} \left (t \right )+3 x_{2} \left (t \right )-3 x_{4} \left (t \right ) \end{align*}
✓ Maple. Time used: 0.157 (sec). Leaf size: 130
ode:=[diff(x__1(t),t) = 3*x__2(t)-2*x__4(t), diff(x__2(t),t) = -1/2*x__1(t)+x__2(t)-3*x__3(t)-5/2*x__4(t), diff(x__3(t),t) = 3*x__2(t)-5*x__3(t)-3*x__4(t), diff(x__4(t),t) = x__1(t)+3*x__2(t)-3*x__4(t)];
dsolve(ode);
\begin{align*}
x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{-2 t}-c_2 \,{\mathrm e}^{-t}+c_3 \,{\mathrm e}^{-2 t} \sin \left (3 t \right )+c_4 \,{\mathrm e}^{-2 t} \cos \left (3 t \right ) \\
x_{2} \left (t \right ) &= c_2 \,{\mathrm e}^{-t}+c_3 \,{\mathrm e}^{-2 t} \cos \left (3 t \right )-c_4 \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \\
x_{3} \left (t \right ) &= {\mathrm e}^{-2 t} \left (\cos \left (3 t \right ) c_3 -\sin \left (3 t \right ) c_4 -c_1 \right ) \\
x_{4} \left (t \right ) &= c_1 \,{\mathrm e}^{-2 t}+c_2 \,{\mathrm e}^{-t}+c_3 \,{\mathrm e}^{-2 t} \sin \left (3 t \right )+c_4 \,{\mathrm e}^{-2 t} \cos \left (3 t \right ) \\
\end{align*}
✓ Mathematica. Time used: 0.023 (sec). Leaf size: 261
ode={D[x1[t],t]==0*x1[t]+3*x2[t]+0*x3[t]-2*x4[t],D[x2[t],t]==-1/2*x1[t]+1*x2[t]-3*x3[t]-5/2*x4[t],D[x3[t],t]==0*x1[t]+3*x2[t]-5*x3[t]-3*x4[t],D[x4[t],t]==1*x1[t]+3*x2[t]+0*x3[t]-3*x4[t]};
ic={};
DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
\begin{align*} \text {x1}(t)&\to \frac {1}{2} e^{-2 t} \left (c_1 e^t-c_4 e^t+2 (-c_2+c_3+c_4) \cos (3 t)+(c_1+2 c_2-c_4) \sin (3 t)+c_1+2 c_2-2 c_3-c_4\right )\\ \text {x2}(t)&\to \frac {1}{2} e^{-2 t} \left ((c_4-c_1) e^t+(c_1+2 c_2-c_4) \cos (3 t)+2 (c_2-c_3-c_4) \sin (3 t)\right )\\ \text {x3}(t)&\to \frac {1}{2} e^{-2 t} ((c_1+2 c_2-c_4) \cos (3 t)+2 (c_2-c_3-c_4) \sin (3 t)-c_1-2 c_2+2 c_3+c_4)\\ \text {x4}(t)&\to \frac {1}{2} e^{-2 t} \left (c_1 \left (-e^t\right )+c_4 e^t+2 (-c_2+c_3+c_4) \cos (3 t)+(c_1+2 c_2-c_4) \sin (3 t)+c_1+2 c_2-2 c_3-c_4\right ) \end{align*}
✓ Sympy. Time used: 0.144 (sec). Leaf size: 139
from sympy import *
t = symbols("t")
x__1 = Function("x__1")
x__2 = Function("x__2")
x__3 = Function("x__3")
x__4 = Function("x__4")
ode=[Eq(-3*x__2(t) + 2*x__4(t) + Derivative(x__1(t), t),0),Eq(x__1(t)/2 - x__2(t) + 3*x__3(t) + 5*x__4(t)/2 + Derivative(x__2(t), t),0),Eq(-3*x__2(t) + 5*x__3(t) + 3*x__4(t) + Derivative(x__3(t), t),0),Eq(-x__1(t) - 3*x__2(t) + 3*x__4(t) + Derivative(x__4(t), t),0)]
ics = {}
dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)
\[
\left [ x^{1}{\left (t \right )} = C_{1} e^{- 2 t} - C_{2} e^{- 2 t} \sin {\left (3 t \right )} + C_{3} e^{- 2 t} \cos {\left (3 t \right )} - C_{4} e^{- t}, \ x^{2}{\left (t \right )} = - C_{2} e^{- 2 t} \cos {\left (3 t \right )} - C_{3} e^{- 2 t} \sin {\left (3 t \right )} + C_{4} e^{- t}, \ x^{3}{\left (t \right )} = - C_{1} e^{- 2 t} - C_{2} e^{- 2 t} \cos {\left (3 t \right )} - C_{3} e^{- 2 t} \sin {\left (3 t \right )}, \ x^{4}{\left (t \right )} = C_{1} e^{- 2 t} - C_{2} e^{- 2 t} \sin {\left (3 t \right )} + C_{3} e^{- 2 t} \cos {\left (3 t \right )} + C_{4} e^{- t}\right ]
\]