70.28.3 problem 4

Internal problem ID [19156]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 6. Systems of First Order Linear Equations. Section 6.6 (Nonhomogeneous Linear Systems). Problems at page 436
Problem number : 4
Date solved : Thursday, October 02, 2025 at 03:38:46 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=2 x_{1} \left (t \right )-5 x_{2} \left (t \right )-\cos \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )-2 x_{2} \left (t \right )+\sin \left (t \right ) \end{align*}
Maple. Time used: 0.235 (sec). Leaf size: 59
ode:=[diff(x__1(t),t) = 2*x__1(t)-5*x__2(t)-cos(t), diff(x__2(t),t) = x__1(t)-2*x__2(t)+sin(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= \cos \left (t \right ) c_1 +2 \cos \left (t \right ) t +\sin \left (t \right ) c_2 -\sin \left (t \right ) t -\cos \left (t \right ) \\ x_{2} \left (t \right ) &= \frac {2 \cos \left (t \right ) c_1}{5}-\frac {\cos \left (t \right ) c_2}{5}+\cos \left (t \right ) t +\frac {\sin \left (t \right ) c_1}{5}+\frac {2 \sin \left (t \right ) c_2}{5}-\cos \left (t \right ) \\ \end{align*}
Mathematica. Time used: 0.089 (sec). Leaf size: 146
ode={D[x1[t],t]==2*x1[t]-5*x2[t]-Cos[t],D[x2[t],t]==1*x1[t]-2*x2[t]+Sin[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)&\to -5 \sin (t) \int _1^t\left (2 \sin ^2(K[2])+\sin (2 K[2])\right )dK[2]+(2 \sin (t)+\cos (t)) \int _1^t(-3 \cos (2 K[1])+\sin (2 K[1])+2)dK[1]-5 c_2 \sin (t)+c_1 (2 \sin (t)+\cos (t))\\ \text {x2}(t)&\to (\cos (t)-2 \sin (t)) \int _1^t\left (2 \sin ^2(K[2])+\sin (2 K[2])\right )dK[2]+\sin (t) \int _1^t(-3 \cos (2 K[1])+\sin (2 K[1])+2)dK[1]+c_1 \sin (t)+c_2 (\cos (t)-2 \sin (t)) \end{align*}
Sympy. Time used: 0.112 (sec). Leaf size: 116
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-2*x__1(t) + 5*x__2(t) + cos(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) + 2*x__2(t) - sin(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - t \sin ^{3}{\left (t \right )} + 2 t \sin ^{2}{\left (t \right )} \cos {\left (t \right )} - t \sin {\left (t \right )} \cos ^{2}{\left (t \right )} + 2 t \cos ^{3}{\left (t \right )} - \left (C_{1} - 2 C_{2}\right ) \cos {\left (t \right )} - \left (2 C_{1} + C_{2}\right ) \sin {\left (t \right )} - 3 \sin ^{3}{\left (t \right )} - 3 \sin {\left (t \right )} \cos ^{2}{\left (t \right )}, \ x^{2}{\left (t \right )} = - C_{1} \sin {\left (t \right )} + C_{2} \cos {\left (t \right )} + t \sin ^{2}{\left (t \right )} \cos {\left (t \right )} + t \cos ^{3}{\left (t \right )} - \sin ^{3}{\left (t \right )} - \sin {\left (t \right )} \cos ^{2}{\left (t \right )}\right ] \]