71.1.6 problem 17 (page 27)

Internal problem ID [19182]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 17 (page 27)
Date solved : Thursday, October 02, 2025 at 03:40:54 PM
CAS classification : [_separable]

\begin{align*} y^{\prime } \sqrt {-x^{2}+1}+\sqrt {1-y^{2}}&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 11
ode:=(-x^2+1)^(1/2)*diff(y(x),x)+(1-y(x)^2)^(1/2) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\sin \left (\arcsin \left (x \right )+c_1 \right ) \]
Mathematica. Time used: 0.148 (sec). Leaf size: 33
ode=Sqrt[1-x^2]*D[y[x],x]+Sqrt[1-y[x]^2]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\sin (\arcsin (x)-c_1)\\ y(x)&\to -1\\ y(x)&\to 1\\ y(x)&\to \text {Interval}[\{-1,1\}] \end{align*}
Sympy. Time used: 0.173 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(sqrt(1 - x**2)*Derivative(y(x), x) + sqrt(1 - y(x)**2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sin {\left (C_{1} - \operatorname {asin}{\left (x \right )} \right )} \]