71.1.14 problem 28 (page 32)

Internal problem ID [19190]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 28 (page 32)
Date solved : Thursday, October 02, 2025 at 03:42:46 PM
CAS classification : [[_homogeneous, `class C`], _rational]

\begin{align*} y^{\prime }&=\frac {2 \left (y+2\right )^{2}}{\left (x +y-1\right )^{2}} \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 26
ode:=diff(y(x),x) = 2*(y(x)+2)^2/(x+y(x)-1)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -2+\left (-x +3\right ) \tan \left (\operatorname {RootOf}\left (-2 \textit {\_Z} +\ln \left (\tan \left (\textit {\_Z} \right )\right )+\ln \left (x -3\right )+c_1 \right )\right ) \]
Mathematica. Time used: 0.152 (sec). Leaf size: 142
ode=D[y[x],x]==2* ((y[x]+2)/(x+y[x]-1))^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {2 (x-3)}{x^2-6 x+K[2]^2+4 K[2]+13}-\int _1^x\left (\frac {2 (K[2]+2) (2 K[2]+4)}{\left (K[1]^2-6 K[1]+K[2]^2+4 K[2]+13\right )^2}-\frac {2}{K[1]^2-6 K[1]+K[2]^2+4 K[2]+13}\right )dK[1]+\frac {1}{K[2]+2}\right )dK[2]+\int _1^x-\frac {2 (y(x)+2)}{K[1]^2-6 K[1]+y(x)^2+4 y(x)+13}dK[1]=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*(y(x) + 2)**2/(x + y(x) - 1)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out