71.1.124 problem 151 (page 224)

Internal problem ID [19300]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 151 (page 224)
Date solved : Thursday, October 02, 2025 at 04:18:34 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime }+y^{\prime }-y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 17
ode:=2*diff(diff(y(x),x),x)+diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{\frac {x}{2}}+c_2 \,{\mathrm e}^{-x} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 24
ode=2*D[y[x],{x,2}]+D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x} \left (c_1 e^{3 x/2}+c_2\right ) \end{align*}
Sympy. Time used: 0.066 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + C_{2} e^{\frac {x}{2}} \]