72.1.32 problem 2 (r)

Internal problem ID [19373]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 1. The Nature of Differential Equations. Separable Equations. Section 2. Problems at page 9
Problem number : 2 (r)
Date solved : Thursday, October 02, 2025 at 04:19:56 PM
CAS classification : [_separable]

\begin{align*} y \ln \left (y\right )-x y^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 8
ode:=y(x)*ln(y(x))-x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{c_1 x} \]
Mathematica. Time used: 0.106 (sec). Leaf size: 18
ode=y[x]*Log[y[x]]-x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{e^{c_1} x}\\ y(x)&\to 1 \end{align*}
Sympy. Time used: 0.155 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + y(x)*log(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{C_{1} x} \]