72.1.41 problem 4 (c)

Internal problem ID [19382]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 1. The Nature of Differential Equations. Separable Equations. Section 2. Problems at page 9
Problem number : 4 (c)
Date solved : Thursday, October 02, 2025 at 04:20:04 PM
CAS classification : [_separable]

\begin{align*} {\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.065 (sec). Leaf size: 11
ode:=exp(-y(x))+(x^2+1)*diff(y(x),x) = 0; 
ic:=[y(0) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \ln \left (-\arctan \left (x \right )+1\right ) \]
Mathematica. Time used: 0.256 (sec). Leaf size: 12
ode=Exp[-y[x]]+(1+x^2)*D[y[x],x]==0; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \log (1-\arctan (x)) \end{align*}
Sympy. Time used: 0.125 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x**2 + 1)*Derivative(y(x), x) + exp(-y(x)),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \log {\left (1 - \operatorname {atan}{\left (x \right )} \right )} \]