72.3.5 problem 1 (e)

Internal problem ID [19394]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Section 7 (Homogeneous Equations). Problems at page 67
Problem number : 1 (e)
Date solved : Thursday, October 02, 2025 at 04:21:48 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} x y^{\prime }&=y+2 x \,{\mathrm e}^{-\frac {y}{x}} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 14
ode:=x*diff(y(x),x) = y(x)+2*x*exp(-y(x)/x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (\ln \left (2\right )+\ln \left (\ln \left (x \right )+c_1 \right )\right ) x \]
Mathematica. Time used: 0.266 (sec). Leaf size: 15
ode=x*D[y[x],x]==y[x]+2*x*Exp[-y[x]/x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x \log (2 \log (x)+c_1) \end{align*}
Sympy. Time used: 0.364 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - 2*x*exp(-y(x)/x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \log {\left (\left (C_{1} + \log {\left (x^{2} \right )}\right )^{x} \right )} \]