Internal
problem
ID
[19420]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
8
(Exact
Equations).
Problems
at
page
72
Problem
number
:
12
Date
solved
:
Thursday, October 02, 2025 at 04:25:21 PM
CAS
classification
:
[_exact]
ode:=2*x*y(x)^4+sin(y(x))+(4*x^2*y(x)^3+x*cos(y(x)))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(2*x*y[x]^4+Sin[y[x]])+ (4*x^2*y[x]^3+x*Cos[y[x]])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x)**4 + (4*x**2*y(x)**3 + x*cos(y(x)))*Derivative(y(x), x) + sin(y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out