Internal
problem
ID
[19429]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
8
(Exact
Equations).
Problems
at
page
72
Problem
number
:
21
Date
solved
:
Thursday, October 02, 2025 at 04:26:33 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
ode:=(4*y(x)^2-2*x^2)/(4*x*y(x)^2-x^3)+(8*y(x)^2-x^2)/(4*y(x)^3-x^2*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( (4*y[x]^2-2*x^2 )/( 4*x*y[x]^2 - x^3) )+( (8*y[x]^2-x^2)/(4*y[x]^3-x^2*y[x]) )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2*x**2 + 4*y(x)**2)/(-x**3 + 4*x*y(x)**2) + (-x**2 + 8*y(x)**2)*Derivative(y(x), x)/(-x**2*y(x) + 4*y(x)**3),0) ics = {} dsolve(ode,func=y(x),ics=ics)