72.5.9 problem 2 (i)

Internal problem ID [19438]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Section 9 (Integrating Factors). Problems at page 80
Problem number : 2 (i)
Date solved : Thursday, October 02, 2025 at 04:27:07 PM
CAS classification : [`y=_G(x,y')`]

\begin{align*} y \ln \left (y\right )-2 y x +\left (x +y\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.101 (sec). Leaf size: 36
ode:=y(x)*ln(y(x))-2*x*y(x)+(x+y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {-x \operatorname {LambertW}\left (\frac {{\mathrm e}^{\frac {x^{2}-c_1}{x}}}{x}\right )+x^{2}-c_1}{x}} \]
Mathematica. Time used: 1.515 (sec). Leaf size: 22
ode=( y[x]*Log[y[x]] -2*x*y[x] )+( x+y[x] )*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x W\left (\frac {e^{x+\frac {c_1}{x}}}{x}\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x) + (x + y(x))*Derivative(y(x), x) + y(x)*log(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (2*x - log(y(x)))*y(x)/(x + y(x)) cannot be solved by the factorable group method