72.5.15 problem 4 (d)

Internal problem ID [19444]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Section 9 (Integrating Factors). Problems at page 80
Problem number : 4 (d)
Date solved : Thursday, October 02, 2025 at 04:27:19 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (x +y\right ) y^{\prime }&=y-x \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 24
ode:=(x+y(x))*diff(y(x),x) = y(x)-x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \tan \left (\operatorname {RootOf}\left (2 \textit {\_Z} +\ln \left (\sec \left (\textit {\_Z} \right )^{2}\right )+2 \ln \left (x \right )+2 c_1 \right )\right ) x \]
Mathematica. Time used: 0.021 (sec). Leaf size: 34
ode=(y[x]+x)*D[y[x],x] == y[x]-x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\arctan \left (\frac {y(x)}{x}\right )+\frac {1}{2} \log \left (\frac {y(x)^2}{x^2}+1\right )=-\log (x)+c_1,y(x)\right ] \]
Sympy. Time used: 0.891 (sec). Leaf size: 26
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x + (x + y(x))*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \log {\left (x \right )} = C_{1} - \log {\left (\sqrt {1 + \frac {y^{2}{\left (x \right )}}{x^{2}}} \right )} - \operatorname {atan}{\left (\frac {y{\left (x \right )}}{x} \right )} \]