72.5.17 problem 4 (f)

Internal problem ID [19446]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Section 9 (Integrating Factors). Problems at page 80
Problem number : 4 (f)
Date solved : Thursday, October 02, 2025 at 04:27:24 PM
CAS classification : [_separable]

\begin{align*} x y^{\prime }-y+y^{2}&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 11
ode:=y(x)^2-y(x)+x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x}{x +c_1} \]
Mathematica. Time used: 0.165 (sec). Leaf size: 25
ode=(y[x]^2-y[x])+x*D[y[x],x] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x}{x+e^{c_1}}\\ y(x)&\to 0\\ y(x)&\to 1 \end{align*}
Sympy. Time used: 0.154 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + y(x)**2 - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x}{C_{1} + x} \]