72.7.12 problem 3 (b)

Internal problem ID [19484]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Section 11 (Reduction of order). Problems at page 87
Problem number : 3 (b)
Date solved : Thursday, October 02, 2025 at 04:31:43 PM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]

\begin{align*} y^{\prime \prime }+{y^{\prime }}^{2}&=1 \end{align*}
Maple. Time used: 0.018 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)+diff(y(x),x)^2 = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -x -\ln \left (2\right )+\ln \left (-c_1 \,{\mathrm e}^{2 x}+c_2 \right ) \]
Mathematica. Time used: 0.337 (sec). Leaf size: 48
ode=D[y[x],{x,2}]+D[y[x],x]^2==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{2} \log \left (e^{2 x}\right )+\log \left (e^{2 x}+e^{2 c_1}\right )+c_2\\ y(x)&\to \frac {1}{2} \log \left (e^{2 x}\right )+c_2 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out