72.8.20 problem 20

Internal problem ID [19504]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 2. First order equations. Miscellaneous Problems for Chapter 2. Problems at page 99
Problem number : 20
Date solved : Thursday, October 02, 2025 at 04:33:20 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y^{2}-3 y x -2 x^{2}&=\left (x^{2}-y x \right ) y^{\prime } \end{align*}
Maple. Time used: 0.013 (sec). Leaf size: 59
ode:=y(x)^2-3*x*y(x)-2*x^2 = (x^2-x*y(x))*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {c_1 \,x^{2}-\sqrt {2 x^{4} c_1^{2}+1}}{c_1 x} \\ y &= \frac {c_1 \,x^{2}+\sqrt {2 x^{4} c_1^{2}+1}}{c_1 x} \\ \end{align*}
Mathematica. Time used: 0.42 (sec). Leaf size: 99
ode=y[x]^2-3*x*y[x]-2*x^2==(x^2-x*y[x])*D[y[x],x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x-\frac {\sqrt {2 x^4+e^{2 c_1}}}{x}\\ y(x)&\to x+\frac {\sqrt {2 x^4+e^{2 c_1}}}{x}\\ y(x)&\to x-\frac {\sqrt {2} \sqrt {x^4}}{x}\\ y(x)&\to \frac {\sqrt {2} \sqrt {x^4}}{x}+x \end{align*}
Sympy. Time used: 0.886 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x**2 - 3*x*y(x) - (x**2 - x*y(x))*Derivative(y(x), x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = x - \frac {\sqrt {C_{1} + 2 x^{4}}}{x}, \ y{\left (x \right )} = x + \frac {\sqrt {C_{1} + 2 x^{4}}}{x}\right ] \]