Internal
problem
ID
[815]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
5.1,
second
order
linear
equations.
Page
299
Problem
number
:
9
Date
solved
:
Tuesday, September 30, 2025 at 04:15:41 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x) = 0; ic:=[y(0) = 2, D(y)(0) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+2*D[y[x],x]+y[x]==0; ic={y[0]==2,Derivative[1][y][0] ==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x) + 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): -1} dsolve(ode,func=y(x),ics=ics)