2.7.11 problem 11

Internal problem ID [817]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.1, second order linear equations. Page 299
Problem number : 11
Date solved : Tuesday, September 30, 2025 at 04:15:43 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \\ y^{\prime }\left (0\right )&=5 \\ \end{align*}
Maple. Time used: 0.050 (sec). Leaf size: 10
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+2*y(x) = 0; 
ic:=[y(0) = 0, D(y)(0) = 5]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = 5 \,{\mathrm e}^{x} \sin \left (x \right ) \]
Mathematica. Time used: 0.009 (sec). Leaf size: 12
ode=D[y[x],{x,2}]-2*D[y[x],x]+2*y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==5}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 5 e^x \sin (x) \end{align*}
Sympy. Time used: 0.094 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 5} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = 5 e^{x} \sin {\left (x \right )} \]