Internal
problem
ID
[819]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Section
5.1,
second
order
linear
equations.
Page
299
Problem
number
:
13
Date
solved
:
Tuesday, September 30, 2025 at 04:15:44 AM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = 0; ic:=[y(1) = 3, D(y)(1) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0; ic={y[1]==3,Derivative[1][y][1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) + 2*y(x),0) ics = {y(1): 3, Subs(Derivative(y(x), x), x, 1): 1} dsolve(ode,func=y(x),ics=ics)