2.7.13 problem 13

Internal problem ID [819]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.1, second order linear equations. Page 299
Problem number : 13
Date solved : Tuesday, September 30, 2025 at 04:15:44 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=3 \\ y^{\prime }\left (1\right )&=1 \\ \end{align*}
Maple. Time used: 0.027 (sec). Leaf size: 13
ode:=x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = 0; 
ic:=[y(1) = 3, D(y)(1) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = -2 x^{2}+5 x \]
Mathematica. Time used: 0.007 (sec). Leaf size: 12
ode=x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0; 
ic={y[1]==3,Derivative[1][y][1]==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to (5-2 x) x \end{align*}
Sympy. Time used: 0.121 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) + 2*y(x),0) 
ics = {y(1): 3, Subs(Derivative(y(x), x), x, 1): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (5 - 2 x\right ) \]