72.19.11 problem 3 (b)

Internal problem ID [19716]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 5. Power Series Solutions and Special Functions. Section 29. Regular singular Points. Problems at page 227
Problem number : 3 (b)
Date solved : Thursday, October 02, 2025 at 04:41:35 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.027 (sec). Leaf size: 43
Order:=6; 
ode:=4*x^2*diff(diff(y(x),x),x)+(2*x^4-5*x)*diff(y(x),x)+(3*x^2+2)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{{1}/{4}} \left (1-\frac {3}{2} x^{2}-\frac {1}{30} x^{3}+\frac {1}{8} x^{4}+\frac {137}{1300} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \,x^{2} \left (1-\frac {1}{10} x^{2}-\frac {4}{57} x^{3}+\frac {3}{920} x^{4}+\frac {32}{4275} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 78
ode=4*x^2*D[y[x],{x,2}]+(2*x^4-5*x)*D[y[x],x]+(3*x^2+2)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {32 x^5}{4275}+\frac {3 x^4}{920}-\frac {4 x^3}{57}-\frac {x^2}{10}+1\right ) x^2+c_2 \left (\frac {137 x^5}{1300}+\frac {x^4}{8}-\frac {x^3}{30}-\frac {3 x^2}{2}+1\right ) \sqrt [4]{x} \]
Sympy. Time used: 0.386 (sec). Leaf size: 49
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) + (3*x**2 + 2)*y(x) + (2*x**4 - 5*x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} x^{2} \left (- \frac {4 x^{3}}{57} - \frac {x^{2}}{10} + 1\right ) + C_{1} \sqrt [4]{x} \left (\frac {x^{4}}{8} - \frac {x^{3}}{30} - \frac {3 x^{2}}{2} + 1\right ) + O\left (x^{6}\right ) \]