72.23.1 problem 3 (a)

Internal problem ID [19738]
Book : DIFFERENTIAL EQUATIONS WITH APPLICATIONS AND HISTORICAL NOTES by George F. Simmons. 3rd edition. 2017. CRC press, Boca Raton FL.
Section : Chapter 9. Laplace transforms. Section 50. Applications to differential equations. Problems at page 462
Problem number : 3 (a)
Date solved : Thursday, October 02, 2025 at 04:41:50 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+y&=3 \,{\mathrm e}^{2 x} \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.082 (sec). Leaf size: 15
ode:=diff(y(x),x)+y(x) = 3*exp(2*x); 
ic:=[y(0) = 0]; 
dsolve([ode,op(ic)],y(x),method='laplace');
 
\[ y = {\mathrm e}^{2 x}-{\mathrm e}^{-x} \]
Mathematica. Time used: 0.026 (sec). Leaf size: 18
ode=D[y[x],x]+y[x]==3*Exp[2*x]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x} \left (e^{3 x}-1\right ) \end{align*}
Sympy. Time used: 0.075 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 3*exp(2*x) + Derivative(y(x), x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{2 x} - e^{- x} \]