2.7.20 problem 36

Internal problem ID [826]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.1, second order linear equations. Page 299
Problem number : 36
Date solved : Tuesday, September 30, 2025 at 04:15:51 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 12
ode:=2*diff(diff(y(x),x),x)+3*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{-\frac {3 x}{2}} \]
Mathematica. Time used: 0.006 (sec). Leaf size: 21
ode=2*D[y[x],{x,2}]+3*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2-\frac {2}{3} c_1 e^{-3 x/2} \end{align*}
Sympy. Time used: 0.109 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- \frac {3 x}{2}} \]