73.2.1 problem 1

Internal problem ID [19800]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall. London. First Edition (1969)
Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 1
Date solved : Thursday, October 02, 2025 at 04:43:56 PM
CAS classification : [_quadrature]

\begin{align*} x^{\prime }&=-\lambda x \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 11
ode:=diff(x(t),t) = -lambda*x(t); 
dsolve(ode,x(t), singsol=all);
 
\[ x = c_1 \,{\mathrm e}^{-\lambda t} \]
Mathematica. Time used: 0.023 (sec). Leaf size: 18
ode=D[x[t],t]==\[Lambda]*x[t]; 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to c_1 e^{\lambda t}\\ x(t)&\to 0 \end{align*}
Sympy. Time used: 0.058 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
lambda_ = symbols("lambda_") 
x = Function("x") 
ode = Eq(lambda_*x(t) + Derivative(x(t), t),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{1} e^{- \lambda _{} t} \]