73.2.10 problem 6 (iii)

Internal problem ID [19809]
Book : Elementary Differential Equations. By R.L.E. Schwarzenberger. Chapman and Hall. London. First Edition (1969)
Section : Chapter 4. Autonomous systems. Exercises at page 69
Problem number : 6 (iii)
Date solved : Thursday, October 02, 2025 at 04:44:01 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=0 \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=0 \\ x^{\prime }\left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.036 (sec). Leaf size: 10
ode:=diff(diff(x(t),t),t)+2*diff(x(t),t)+x(t) = 0; 
ic:=[x(0) = 0, D(x)(0) = 1]; 
dsolve([ode,op(ic)],x(t), singsol=all);
 
\[ x = {\mathrm e}^{-t} t \]
Mathematica. Time used: 0.009 (sec). Leaf size: 12
ode=D[x[t],{t,2}]+2*D[x[t],t]+x[t]==0; 
ic={x[0]==0,Derivative[1][x][0] == 1}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to e^{-t} t \end{align*}
Sympy. Time used: 0.086 (sec). Leaf size: 7
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(x(t) + 2*Derivative(x(t), t) + Derivative(x(t), (t, 2)),0) 
ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): 1} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = t e^{- t} \]