2.7.26 problem 42

Internal problem ID [832]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.1, second order linear equations. Page 299
Problem number : 42
Date solved : Tuesday, September 30, 2025 at 04:15:55 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 35 y^{\prime \prime }-y^{\prime }-12 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=35*diff(diff(y(x),x),x)-diff(y(x),x)-12*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-\frac {4 x}{7}}+c_2 \,{\mathrm e}^{\frac {3 x}{5}} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 26
ode=35*D[y[x],{x,2}]-D[y[x],x]-12*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{-4 x/7}+c_2 e^{3 x/5} \end{align*}
Sympy. Time used: 0.119 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-12*y(x) - Derivative(y(x), x) + 35*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \frac {4 x}{7}} + C_{2} e^{\frac {3 x}{5}} \]