74.4.3 problem 3

Internal problem ID [19840]
Book : Elementary Differential Equations. By Thornton C. Fry. D Van Nostrand. NY. First Edition (1929)
Section : Chapter IV. Methods of solution: First order equations. section 31. Problems at page 85
Problem number : 3
Date solved : Thursday, October 02, 2025 at 04:47:35 PM
CAS classification : [_Bernoulli]

\begin{align*} y^{\prime }+\frac {y}{x}&=\frac {\sin \left (x \right )}{y^{3}} \end{align*}
Maple. Time used: 0.019 (sec). Leaf size: 156
ode:=diff(y(x),x)+y(x)/x = sin(x)/y(x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {{\left (4 \left (-x^{4}+12 x^{2}-24\right ) \cos \left (x \right )+16 \left (x^{3}-6 x \right ) \sin \left (x \right )+c_1 \right )}^{{1}/{4}}}{x} \\ y &= -\frac {{\left (4 \left (-x^{4}+12 x^{2}-24\right ) \cos \left (x \right )+16 \left (x^{3}-6 x \right ) \sin \left (x \right )+c_1 \right )}^{{1}/{4}}}{x} \\ y &= -\frac {i {\left (4 \left (-x^{4}+12 x^{2}-24\right ) \cos \left (x \right )+16 \left (x^{3}-6 x \right ) \sin \left (x \right )+c_1 \right )}^{{1}/{4}}}{x} \\ y &= \frac {i {\left (4 \left (-x^{4}+12 x^{2}-24\right ) \cos \left (x \right )+16 \left (x^{3}-6 x \right ) \sin \left (x \right )+c_1 \right )}^{{1}/{4}}}{x} \\ \end{align*}
Mathematica. Time used: 0.338 (sec). Leaf size: 114
ode=D[y[x],x]+y[x]/x==Sin[x]/y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\sqrt [3]{9 \left (x^2-2\right ) \sin (x)-3 x \left (x^2-6\right ) \cos (x)+c_1}}{x}\\ y(x)&\to -\frac {\sqrt [3]{-1} \sqrt [3]{9 \left (x^2-2\right ) \sin (x)-3 x \left (x^2-6\right ) \cos (x)+c_1}}{x}\\ y(x)&\to \frac {(-1)^{2/3} \sqrt [3]{9 \left (x^2-2\right ) \sin (x)-3 x \left (x^2-6\right ) \cos (x)+c_1}}{x} \end{align*}
Sympy. Time used: 3.384 (sec). Leaf size: 197
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - sin(x)/y(x)**3 + y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - i \sqrt [4]{\frac {C_{1}}{x^{4}} - 4 \cos {\left (x \right )} + \frac {16 \sin {\left (x \right )}}{x} + \frac {48 \cos {\left (x \right )}}{x^{2}} - \frac {96 \sin {\left (x \right )}}{x^{3}} - \frac {96 \cos {\left (x \right )}}{x^{4}}}, \ y{\left (x \right )} = i \sqrt [4]{\frac {C_{1}}{x^{4}} - 4 \cos {\left (x \right )} + \frac {16 \sin {\left (x \right )}}{x} + \frac {48 \cos {\left (x \right )}}{x^{2}} - \frac {96 \sin {\left (x \right )}}{x^{3}} - \frac {96 \cos {\left (x \right )}}{x^{4}}}, \ y{\left (x \right )} = - \sqrt [4]{\frac {C_{1}}{x^{4}} - 4 \cos {\left (x \right )} + \frac {16 \sin {\left (x \right )}}{x} + \frac {48 \cos {\left (x \right )}}{x^{2}} - \frac {96 \sin {\left (x \right )}}{x^{3}} - \frac {96 \cos {\left (x \right )}}{x^{4}}}, \ y{\left (x \right )} = \sqrt [4]{\frac {C_{1}}{x^{4}} - 4 \cos {\left (x \right )} + \frac {16 \sin {\left (x \right )}}{x} + \frac {48 \cos {\left (x \right )}}{x^{2}} - \frac {96 \sin {\left (x \right )}}{x^{3}} - \frac {96 \cos {\left (x \right )}}{x^{4}}}\right ] \]