75.1.10 problem 9

Internal problem ID [19891]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter I. Introduction. Exercises at page 13
Problem number : 9
Date solved : Thursday, October 02, 2025 at 05:00:25 PM
CAS classification : [[_3rd_order, _missing_y]]

\begin{align*} y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x}&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 14
ode:=diff(diff(diff(y(x),x),x),x)+3/x*diff(diff(y(x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +\frac {c_2}{x}+c_3 x \]
Mathematica. Time used: 0.018 (sec). Leaf size: 21
ode=D[y[x],{x,3}]+3/x*D[y[x],{x,2}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1}{2 x}+c_3 x+c_2 \end{align*}
Sympy. Time used: 0.034 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), (x, 3)) + 3*Derivative(y(x), (x, 2))/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{2}}{x} + C_{3} x \]