Internal
problem
ID
[19900]
Book
:
A
short
course
on
differential
equations.
By
Donald
Francis
Campbell.
Maxmillan
company.
London.
1907
Section
:
Chapter
II.
Change
of
variable.
Exercises
at
page
20
Problem
number
:
6
Date
solved
:
Friday, October 03, 2025 at 07:34:18 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=y(x)^2*diff(diff(diff(y(x),x),x),x)-(3*y(x)*diff(y(x),x)+2*x*y(x)^2)*diff(diff(y(x),x),x)+(2*diff(y(x),x)^2+2*x*y(x)*diff(y(x),x)+3*x^2*y(x)^2)*diff(y(x),x)+x^3*y(x)^3 = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]^2*D[y[x],{x,3}]-(3*y[x]*D[y[x],x]+2*x*y[x]^2 )*D[y[x],{x,2}]+(2*D[y[x],x]^2+2*x*y[x]*D[y[x],x]+3*x^2*y[x]^2)*D[y[x],x]+x^3*y[x]^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*y(x)**3 - (2*x*y(x)**2 + 3*y(x)*Derivative(y(x), x))*Derivative(y(x), (x, 2)) + (3*x**2*y(x)**2 + 2*x*y(x)*Derivative(y(x), x) + 2*Derivative(y(x), x)**2)*Derivative(y(x), x) + y(x)**2*Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x*y(x)/3 + (-7*x**2*y(x)**2/2 + 9*y(x)*Derivative(y(x), (x, 2))/2)/(3*(-1/2 + sqrt(3)*I/2)*(31*x**3*y(x)**3/4 - 9*x*(3*x**2*y(x)**2/2 - 3*y(x)*Derivative(y(x), (x, 2))/2)*y(x)/2 - 27*x*y(x)**2*Derivative(y(x), (x, 2))/2 + sqrt(-4*(-7*x**2*y(x)**2/2 + 9*y(x)*Derivative(y(x), (x, 2))/2)**3 + (31*x**3*y(x)**3/2 - 9*x*(3*x**2*y(x)**2/2 - 3*y(x)*Derivative(y(x), (x, 2))/2)*y(x) - 27*x*y(x)**2*Derivative(y(x), (x, 2)) + 27*y(x)**2*Derivative(y(x), (x, 3))/2)**2)/2 + 27*y(x)**2*Derivative(y(x), (x, 3))/4)**(1/3)) + (-1/2 + sqrt(3)*I/2)*(31*x**3*y(x)**3/4 - 9*x*(3*x**2*y(x)**2/2 - 3*y(x)*Derivative(y(x), (x, 2))/2)*y(x)/2 - 27*x*y(x)**2*Derivative(y(x), (x, 2))/2 + sqrt(-4*(-7*x**2*y(x)**2/2 + 9*y(x)*Derivative(y(x), (x, 2))/2)**3 + (31*x**3*y(x)**3/2 - 9*x*(3*x**2*y(x)**2/2 - 3*y(x)*Derivative(y(x), (x, 2))/2)*y(x) - 27*x*y(x)**2*Derivative(y(x), (x, 2)) + 27*y(x)**2*Derivative(y(x), (x, 3))/2)**2)/2 + 27*y(x)**2*Derivative(y(x), (x, 3))/4)**(1/3)/3 + Derivative(y(x), x) cannot be solved by the factorable group method