75.3.35 problem 36

Internal problem ID [19939]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter III. Ordinary differential equations of the first order and first degree. Exercises at page 33
Problem number : 36
Date solved : Thursday, October 02, 2025 at 05:04:17 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} \left (6 x -4 y+1\right ) y^{\prime }&=3 x -2 y+1 \end{align*}
Maple. Time used: 0.019 (sec). Leaf size: 21
ode:=(6*x-4*y(x)+1)*diff(y(x),x) = 3*x-2*y(x)+1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {3 x}{2}-\frac {\operatorname {LambertW}\left (-c_1 \,{\mathrm e}^{1+8 x}\right )}{8}+\frac {1}{8} \]
Mathematica. Time used: 2.489 (sec). Leaf size: 41
ode=(6*x-4*y[x]+1)*D[y[x],x]==3*x-2*y[x]+1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{8} \left (-W\left (-e^{8 x-1+c_1}\right )+12 x+1\right )\\ y(x)&\to \frac {3 x}{2}+\frac {1}{8} \end{align*}
Sympy. Time used: 0.675 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x + (6*x - 4*y(x) + 1)*Derivative(y(x), x) + 2*y(x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {3 x}{2} - \frac {W\left (C_{1} e^{8 x + 1}\right )}{8} + \frac {1}{8} \]