75.4.1 problem 1

Internal problem ID [19940]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter IV. Ordinary linear differential equations with constant coefficients. Exercises at page 48
Problem number : 1
Date solved : Thursday, October 02, 2025 at 05:04:21 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)+3*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{x}+c_2 \right ) {\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 20
ode=D[y[x],{x,2}]+3*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x} \left (c_2 e^x+c_1\right ) \end{align*}
Sympy. Time used: 0.097 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) + 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} e^{- x}\right ) e^{- x} \]