75.5.1 problem 1

Internal problem ID [19949]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter IV. Ordinary linear differential equations with constant coefficients. Exercises at page 58
Problem number : 1
Date solved : Thursday, October 02, 2025 at 05:04:24 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+4 y^{\prime }+3 y&=2 \,{\mathrm e}^{2 x} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 27
ode:=diff(diff(y(x),x),x)+4*diff(y(x),x)+3*y(x) = 2*exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (2 \,{\mathrm e}^{5 x}+15 c_1 \,{\mathrm e}^{2 x}+15 c_2 \right ) {\mathrm e}^{-3 x}}{15} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 31
ode=D[y[x],{x,2}]+4*D[y[x],x]+3*y[x]==2*Exp[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {2 e^{2 x}}{15}+c_1 e^{-3 x}+c_2 e^{-x} \end{align*}
Sympy. Time used: 0.113 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*y(x) - 2*exp(2*x) + 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 3 x} + C_{2} e^{- x} + \frac {2 e^{2 x}}{15} \]