75.5.8 problem 8

Internal problem ID [19956]
Book : A short course on differential equations. By Donald Francis Campbell. Maxmillan company. London. 1907
Section : Chapter IV. Ordinary linear differential equations with constant coefficients. Exercises at page 58
Problem number : 8
Date solved : Thursday, October 02, 2025 at 05:04:27 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y-2 y^{\prime }+y^{\prime \prime }&=x \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 x +c_2 \right ) {\mathrm e}^{x}+x +2 \]
Mathematica. Time used: 0.011 (sec). Leaf size: 21
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==x; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x+c_2 e^x x+c_1 e^x+2 \end{align*}
Sympy. Time used: 0.093 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x + \left (C_{1} + C_{2} x\right ) e^{x} + 2 \]