2.8.7 problem 26(b)

Internal problem ID [844]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.2, second order linear equations. Page 311
Problem number : 26(b)
Date solved : Tuesday, September 30, 2025 at 04:16:05 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+2 y&=6 x +4 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 25
ode:=diff(diff(y(x),x),x)+2*y(x) = 6*x+4; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sin \left (\sqrt {2}\, x \right ) c_2 +\cos \left (\sqrt {2}\, x \right ) c_1 +3 x +2 \]
Mathematica. Time used: 0.01 (sec). Leaf size: 32
ode=D[y[x],{x,2}]+2*y[x]==6*x+4; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 3 x+c_1 \cos \left (\sqrt {2} x\right )+c_2 \sin \left (\sqrt {2} x\right )+2 \end{align*}
Sympy. Time used: 0.037 (sec). Leaf size: 27
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-6*x + 2*y(x) + Derivative(y(x), (x, 2)) - 4,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sin {\left (\sqrt {2} x \right )} + C_{2} \cos {\left (\sqrt {2} x \right )} + 3 x + 2 \]